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Self-consistent T-matrix approximation to the negative4 
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Received 2 July 1992 

Abstract. We consider the ncgalive-U Hubbard model on a q u a r e  hllice in the self- 
consislent T-matrix approximation. We investigate lhe influence of the Fermi sea w 
lhc bound states which always occur in two spatial dimensions in lhc presence of an 
auraetivc interaclion. & long as Ihc binding energy i smaller lhan lhe Fermi energy, 
these bound sales are found 10 be broadened sufficienlly lhat Fermi liquid behaviour 
is reslored. Only in the limit of large binding energy does one expect mcxisling stable 
Bose pairs and dissociated fermions leading IO a breakdown of Fermi liquid lheory. 

I. Introduction 

Recently it has been suggested that the normal state of high-T, superconductors may 
not be a Landau Fermi liquid (1,2]. The theoretical arguments given in favour of 
non-Fermi liquid behaviour are based on an effective one-band Hubbard Hamiltonian 
for electrons on a two-dimensional square lattice [l, 31. Little is still known about the 
properties of this model for strong repulsion near half-filling, despite intense efforts. 
Chances might be better for obtaining results in the low-density regime. There one 
expects to have a small parameter, the ratio of scattering length to the average 
interparticle distance, which should allow one to identify the important processes and 
to collect the corresponding contributions in renormalized perturbation theory [4]. 

Degenerate two-dimensional Fermi systems have been studied by several authors 
[5,6,7, the result found being that although the relaxation rate for quasiparticle 
scattering is enhanced by a factor depending logarithmically on energy, l / r  - 
w2 In IwJ, Fermi liquid behaviour is not destroyed. More recently, there have bee, 
suggestions that the appearance of hound states for attractive interaction may lead to 
a kind of Bose condensation of bound pairs .of electrons, coexisting with dissociated 
pairs, i.e. single unpaired electrons, which would obviously lead to non-Fermi liquid 
behaviour [SI. This idea is based.on the fact that in two dimensions an arbitrarily weak 
attraction between electrons leads to she formation of a bound state, in contrast to the 
case of three dimensions. The open question is, however, under which circumstances 
and to what extent these bound pairs are broken up in the many-body system by 
the interaction between pairs and with single electrons. In the limit that the binding 
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energy, E,, is much greater than the Fermi energy, E,, it is reasonable to expect 
stable pairs, mixed with a negligibly small fraction of dissociated electrons. In the 
opposite limit, however, which is the case of interest here, it is not at all clear 
whether bound pairs can exist for any length of time exceeding, e.g. the quasiparticle 
relaxation time. On the contrary, it is to be expected that interactions of the bound 
pairs with the medium will broaden the bound-state energy level to the extent that 
it will merge with the continuum. The instability of the Fermi sea with respect to 
condensation of pairs into a bound state split off from the lower edge of the pair 
continuum, hypothesized by Schmitt-Rink et al [SI, would be absent in this case. 

The formation of Cooper pairs and the crossover to tightly bound pairs as the pair 
binding is increased has been discussed for a continuum model in the low-density limit 
and within a variational scheme for all densities in [10,9]. For repulsive interaction 
the structure of the two-particle vertex was investigated in the low-density limit and 
a pole was discovered, which, however, does not destroy the Fermi liquid properties. 
One should expect that an extrapolation of the results of [10,9] into the crossover 
region will be subject to precisely the corrections calculated in the present work 

In order to study the question of the possible instability of the Fermi sea with 
respect to condensation of pairs we calculate the lifetime of the bound pairs in the 
simplest possible conserving approximation, the self-consistent T-matrix scheme. 

2. Self-consistent T-matrix approximation 

We consider the Hubbard model for electrons on a square lattice with attractive 
interaction U 

where tk = -2t(cos IC, -I- cos ICy).  
In the low-density limit, the dominating terms in the perturbation expansion in 

terms of the interaction . U  are those with the smallest number of closed fermion 
loops, i.e. the particle-particle ladder diagrams. The latter diagrams are summed 
up to give the T-matrix. In the case of only on-site interactions, as in the Hubbard 
model, the T-matrix is found as a geometric series 

where X(q,ien) is the pair susceptibility 

X(q,irn) = T ~ G ( k , i w , ) G ( q - k , i e ,  -iw,). 
k.m 

The single-particle Green's functions G are given in terms of the selfenergy, C, as 

C(k,iw,) = l/[iw, - ck+p-C(k , iw , ) ] .  (4) 

The self-energy expression 

C(k,iw,) = -T T( q ,  ie,)G(q - k ,  ir, - iw,) 
q.m 

closes the system of equations. The above approximation is conserving. 
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3. Results 

We solve the system of equations (2)-(5) on a 21 x 21 lattice and for 500 Matsubara 
frequencies, and then perform the analytical continuation (111. In the following we 
discuss the solution of these equations for lJ/t = -2.5, in which case the binding 
energy of a zero-momentum pair in the absence of the Fermi sea is Eb/ t  = 0.65. In 
figure 1, we show the imaginary part of the particle-particle T-matrix for U / t  = -2.5, 
for several momenta and densities as a function of the energy. One can see how the 
bound state develops at the lower band edge of the spectrum when q is larger than 
2kF (i.e., q = (3/5,3/5)~ and larger for n = 0.32 in figure l(o), E F / t  being 1). 
This bound state is seen to be increasingly sharp as q approaches the mne boundary, 
as the available phase space for the scattering of bound pairs becomes more and more 
restricted. Nevertheless, the bound state does not split off the continuum spectrum, 
and the lifetime always remains finite as no gap opens in the two-particle excitation 
spectrum. This is in wntrast to the non-self-consistent calculation, where a bound 
state appears separated from the continuum scattering states and is thus seen to be 
stable. 

-1 0 * 4 6 8 10 12 , I  16 -2 0 2 I 8 8 10 12 I, 16 
u/l U/! 

Figure 1. Imaginary pan of the paniele-panicle T-matrix as a function of f r q u e n q  for 
several momenta k = ( q ,  q)  BJ labelled in the figure for U l t  = -2.5, and TJt  = 0.1 
and 11 = 0.32, Bgum I@), and n = 0.05, figure I(b). The venical ban indicate the 
lower edge of the continuum of the scattering stales. 'The a m  shows the position of 
the bound state. 

For lower densities, for instance for n = 0.05 where EF = 0.15 and 2kF is very 
close to 0, the situation is qualitatively different, as shown in figure l(b). Even though 
the bound state is still forming for q > 2k, and becomes sharper with increasing q, 
its location with respect to the continuum states is different. When q is large enoug; 
the bound state tends to separate from the continuum and its lifetime bewmes much 
larger. This occurs because the binding energy of the pairs is much larger than the 
Fcrmi energy, and because the scattering of a single electron by a pair with large 
momentum is strongly reduced due to the statistical factors. Moreover, lowering 
temperature makes the bound state more stable. 

In figure 2 we show the single-particle spectral function as a function of frequency 
for several values of the momentum along the diagonal of the Brillouin zone. For 
rather large density (n = 0.32, figure 2(a)), the effect of the interaction is accounted 
for by a broadening of the peaks and by the appearance of an incoherent background. 
Even though the particle-particle T-matrix exhibits quite a sharp structure, the 
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influence of the latter on the physical properties is quite weak Indeed, the low- 
frequency dependence of Im C ( k , , w )  shows that the system behaves as a Fermi 
liquid. This behaviour is expected to be very strongly affected by lowering the density 
down to values for which the bound state separates out of the continuum. As an 
intermediate situation, let us consider n = 0.05, figure 2(b), where, as a qualitative 
difference, a satellite hand appears below the quasi-particle peak for large momenta. 
The latter results from the separation of the bound state from the continuum. It is 
caused by a pole at z in the complex frequency plane in the Green's function which 
is approaching the quasi-particle pole at zgp as momentum is decreased as displayed 
in figure 3. F a r  this particular choice of the parameters one gets Re z < Re z and 
Im z < Im zw with both imaginary parts becoming of the same order of magnitude 
when the momentum tends to zero. For the latter case one is left with a peak in the 
spectral function resulting from a mixture of a quasi-particle with an unstable pi. 
When the lifetime of the pairs will be larger than the one of the quasi-particles, one 
will obtain a breakdown of the Fermi liquid picture. On lowering density, the latter 
is gradually replaced by a Bose gas picture showing a Bose-Einstein condensation 
only for T E, << Eb, where Eb is the binding energy. Otherwise, as long as 
the system does not show an instability either with respect to superconductivity or to 
charge-density wave, our results indicate that the Fermi liquid picture remains valid. 
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Figure 2. lmaginaly part of lhe onedectmn Green's function as a function of beequenq 
for several momenta k = ( q , q )  as labelled in the figure for U l i  = -2.5. Tl t  = 0.1 
and (a) n = 0.32, (b) n = 0.05. me armw indicates a Satellite peak. 

In figure 3 we display the most important poles of the single-particle Green's function 
at kF in the complex frequency plane for two densities. The latter two are chosen such 
that one Fermiwave-vector matches one point of our discretization in kspace. For both 
densities a quasi-particle builds up and its lifetime is longest as compared with all other 
'particles'. On top of this quasi-particle pole, another pole resulting from the bound 
state in the particle-particle T-matrix is approaching the real frequency axis when the 
density decreases. As seen in figure 3, the location of the latter is very strongly density- 
dependent and it is obvious that its influence on the physical properties is very weak 
unless the density and the temperature are strongly reduced, in such a way that it will 
become closer to the real axis than the quasi-particle pole. Moreover the strength Of 
this pole is very small, compared to that of the quasi-particle, and only an increase in the 
interaction leads to an increase in its strength. 

In figure 4, we display the imaginaly part of the self-energy on the Fermi Surface as 
function of frequency for several temperatures and a rather large density (n = 0.32). 
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Flgure 3. Poles of lhe one-panicle Green’s function at kp in the mmpla frequency 
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1.W 

0.90 

0.60 

0.70 

3 0.60 

5 0.54 

f 0.N 

0.30 

0.20 

0.10 

0.00 

- T/t=O.l 
- - T/1=0.2 

T/1=0.5 

Figure 4. Imaginary pan of ihe self-energy for a wavevector lying on the Fermi surface 
as function of frequency for several temperatures at U/ t = -2.5. 

For the highest temperature, T/t = 0.5, i.e. for a temperature which is close to the 
binding energy of the q = 0 pair which is 0.65, Im C only exhibits a very smooth 
structure in the vicinity of zero frequency. Even though the electrons can form bound 
pairs with a large total momentum, the system & clearly well described in a quasi- 
particle picture as there are no well-defined pairs in the Fermi sea. Lowering the 
temperature down to T / t  = 0.2, and even down to 0.1, does not stabilize the pairs 
to the extent that their lifetime will be larger than that of the quasi-particle. We 
rather see how the Fermi liquid behaviour of Im C sets in as temperature decreases. 

In figure 5, we plot density versus chemical potential for U / t  = -2.5 as obtained 
from 
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Even at temperatures which are smaller than the binding energy, but larger than the 
superconducting T, [12], the density is seen to be only very weakly affected at the 
lower band edge of the free system by the interaction, as displayed in the inset. The 
difference gradually sets in when chemical potential increases and the n(p) relation 
is dominated ,by the Fermi statistics of the non-interacting limit corrected by the 
Hartree term (i.e. by replacing G by G, in (3) and (5) and evaluating (6) [13]) over 
a very wide range of densities. The self-consistent scheme clearly does not lead to 
dramatic changes. 
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Figure 5. Density Venus chemical potential far the selfconsistent aiculation (A) and 
the non-self-consistent one (B) for U t i  = -2.5. and in the non-interacting limit (C) for 
T l i  = 0.1. 

In figure 6, we display the two-particle excitation spectrum for two different 
densities. It consists of two bands: (i) the two-particle band as obtained from the 
two-particle propagator and (ii), for p > 2kF, the bound-state band. The two-particle 
propagator exhibits a pole, or more precisely several poles as discussed in detail in the 
continuum limit in [IO], in the complex energy plane for any momentum. However, 
the lifetime of such a state is very short when it is lying at or in the vicinity of the 
Fermi sea. When the Fermi energy is larger than the binding energy, for instance 
n = 0.18, figure 6(a) ,  the presence of the Fermi sea on the bound state is even 
stronger: it is allowed to exist only for p > 212,. Otherwise two electrons do not 
gain any energy in forming a pair having a total momentum smaller than 2kF. Whet: 
E, > E,, figure 6(b), the bound states are seen to have a much larger lifetime 
and do exist for most of the k-states. Even though they are not totally separated 
from the scattering states, they are stable enough to create a satellite band, which we 
find in the spectral function. However, they are not stable enough to cause a Bose 
Einstein condensation of the pairs. This is the situation which will prevail in most 
of the phase diagram for temperatures larger than T,. In particular, we were able 
to determine the superconducting T, by using Thouless’s criterion [14] for several 
densities without encountering a Bose-Einstein condensation of the local pairs. The 
latter is thus restricted to very low densities and temperatures, which are out of the 
scope of current computer performances. 
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Figure 6. no-particle excitation spectrum arising I" the poles of the two-particle 
propagator, cuwe A, and the two-particle T-matrix, cuwe B. h r  bars indimle the 
width a1 halfmaximum ;n long as lhe peaks are well separated. ?he parameters me 
Uf 1 = -2.5, T f t  = 0.1 and (a) n = 0.18, (b) n = 0.03. ? l e  armw indicates q = 2 k ~ .  

In conclusion, we have investigated the negative4 Hubbard model on a square 
lattice in the framework of the self-consistent T-matrix approximation. Our results 
show that the presence of the k r m i  sea prevents the bound states from having a 
strong influence on the physical properties, as long as the Rrmi  energy is larger than 
the binding energy in the 12 = 0 channel. The system consists of a mixture of bound 
pairs and unpaired electrons building up quasi-particles, whose lifetime is much larger 
than that of the pairs. 
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